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ABSTRACT

A model for the mechanics of a soft hyperelastic material reinforced with long fibers is presented in finite
plane elastostatics. The strain energy potential of the composite is refined by the Mooney Rivlin model
to accommodate the hyperelastic behaviors of the matrix material. Within the framework of the strain
gradient theory, the kinematics of the fibers is formulated and subsequently integrated into the model
of continuum deformation. A rigorous derivation of the Euler equation and the associated boundary con-
ditions are presented by virtue of variational principles and a virtual work statement. In particular, the
obtained model successfully predicts the ‘J-shaped’ stress-strain responses, deformation profiles and shear
strain angles of the elastomer - polyester fiber composites subjected to uniaxial extension. The proposed
model may also serve as an alternative of the Holzapfel model in the design and analysis of biomimetic
composites with rapid strain-stiffening behaviors by providing direct estimations of the stress-strain re-
sponses of intended composites.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Elastomeric materials reinforced with fibers (elastomeric com-
posites) have consistently been the subject of intense study (Shao
et al., 2018; Bouillaguet et al., 2006; Bailly et al., 2014; Leong et al.,
2000; Maurer et al., 2015) for their practical importance in bioma-
terial science and engineering. Contemporary applications of elas-
tomeric composites include the areas of tissue engineering, mi-
crofluidics and biomechanics (Wang et al., 2018; Cheng et al., 2010;
Pritts and Rahn, 2004). For example, in soft robotics, progress is
being made to replace conventional materials (e.g. rigid polymer,
ceramics, metals etc...) with the elastomeric composites in order
to achieve more sophisticated functionalities such as manipula-
tion of delicate objects, conformation to surroundings, and adop-
tive movement in various environments (Martinez et al., 2013).
When the elastomeric matrix materials are used in conjunction
with systematically arranged fiber families they form highly elastic
materials that display direction-dependent properties (orthotropic
properties) and sustain rapid strain stiffening response at low
strain level (20%-50%), known as ‘J-shaped’ stress-strain behavior
(Shadwick, 1999). In fact, J-shaped and orthotropic stress-strain be-
haviors are the characteristics of the biological materials such as
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blood vessels, tendons, muscles, skin and ligaments (Fung, 1984;
Vatankhah-Varnosfaderani et al., 2017). This, in turn, suggests that
biological tissues may be mimicked via the systematic adjustment
and/or optimization of the mechanical responses of elastomeric
composites. Such practices include the predictions and character-
izations of the resultant responses of elastomeric composites from
the individual properties of elastomeric matrixes and fibers, which
are also in a period of active study (Yan et al., 2017; Myung et al.,
2007; Ma et al.,, 2017). Authors in Holzapfel et al. (2000) proposed
a model to describe the fabric-reinforced behavior of a multi-
walled structure of elastic artery. Gent’s and Mooney Rivlin model
are also widely adopted to directly fit the J-shaped stress-strain
curves measured from the resulting elastomeric composites (Gent,
1996; Lu et al, 2012; Zhao and Wang, 2014). These models may
be employed in the combined sense (e.g. Gent’s constitutive model
used in conjunction with Holzapfel model) to achieve more accu-
rate predictions and/or fittings Zhalmuratova et al..

On the other hand, a continuum-based model which incorpo-
rates the responses of fibers into the model of the continuum de-
formation may be sought as a promising alternative. This is framed
in the setting of the nonlinear strain gradient theory (Toupin,
1964; Koiter, 1964; Truesdell and Noll, 1965) of anisotropic elas-
ticity in which the fibers’ bending resistance is assigned to the
changes in curvature (flexure) of fibers explicitly (Spencer and
Soldatos, 2007). The latter is obtained via the computation of
the second gradient of deformations prescribed on the convected
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curves of continuously distributed fibers. The concept is further
refined to accommodate fibers resistant to flexure, extension and
twist within the context of the Cosserat theory of non-linear elas-
ticity (Steigmann, 2012). The second gradient-based continuum
models have been successfully adopted in a wide range of en-
gineering problems such as the mechanics of meshed structures
(Dell'lsola et al., 2016b; 2017; 2016a), bending of unidirectional and
bidirectional fiber composites (Zeidi and Kim, 2017a; 2018; Kim,
2019) and composites reinforced with extensible fibers (Zeidi and
Kim, 2017b). To this end, authors in Kim and Zeidi (2018) pre-
sented the continuum formulation for the description of the bidi-
rectional fiber-reinforced composites, which results in the smooth
transitions of shear strain distributions. However, the models de-
veloped in Zeidi and Kim (2017a, 2018); Kim (2019); Zeidi and
Kim (2017b); Kim and Zeidi (2018) may not be ideal for the
analysis of highly strained fiber-elastomer composites, since the
analyses in Zeidi and Kim (2017a, 2018); Kim (2019); Zeidi and
Kim (2017b); Kim and Zeidi (2018) are intrinsically limited to rel-
atively * small’ deformation regime where linear stress-strain re-
sponses are dominant.

In the present study, we develop a continuum-based model
which describes hyperelastic responses of elastomeric matrix ma-
terials reinforced with polyester fibers and subjected to finite plane
deformations. Thus, it is assumed that the fiber’s directors remain
in a plane, with no out-of-plane components and that the corre-
sponding deformations and material parameters are independent
of the out-of-plane coordinate. Emphasis is placed on the assimi-
lation of rapid strain-stiffening responses of the elastomeric com-
posites at the lower strain levels while maintaining the rigor and
generality in the derivation of the associated constitutive formula-
tion. The strain energy potential of the composite is refined by the
Mooney Rivlin strain energy function, which is one of the widely
adopted strain energy model for the descriptions of materials sus-
taining large deformations analyses (see, for example, Ogden, 1984;
Steigmann, 2017). Within the framework of the second gradient
theory, the kinematics of fibers are determined by their position
and direction fields and incorporated into the model of continuum
deformation while considering fibers as continuously distributed
spatial rods of Kirchhoff type (Landau and Lifshitz, 1986; Dill, 1992;
Antman, 2005). The Euler equilibrium equations and the associ-
ated boundary conditions are also derived by means of a virtual
work statement and variational principles of the second gradient
of deformations. The solutions of the resulting Partial Differen-
tial Equations (PDEs) are obtained via the custom-built numerical
procedures, which demonstrate close correspondence with the re-
sults in literature Zhalmuratova et al., (Dell'lsola et al., 2017) and
(Dell'lsola et al., 2016a).

More importantly, the obtained model assimilates the responses
of the Ecoflex 00500 elastomer - fiber composite subjected to uni-
axial tension and successfully predicts the J-shaped stress-strain
behavior. To further examine the performance of the obtained
model, we also compare it to the Neo Hookean - Holzapfel model
(Holzapfel et al., 2000), Zhalmuratova et al. and (Holzapfel, 2008).
It turns out that both the proposed model and Holzapfel model
perform well in the estimations of J-shaped stress-strain responses
of the samples in which the strain-stiffening phenomena is less
significant. For the composites with rapid strain-stiffening re-
sponses, the proposed model produces more accurate prediction
results than the Holzapfel model at low strain levels. In particular,
the proposed model directly predicts the resultant stress-strain re-
sponses of the composite by integrating the predetermined modu-
lus of matrix materials and fibers into the model of continuum de-
formation. This may facilitate the design and analysis of a particu-
lar composite by providing the instant estimations of the mechan-
ical responses of intended composites. In addition to the stress-
strain responses of the composites, the obtained model provides

the estimations of other important design considerations such as
deformation profiles and contours, and the smooth transitions in
the shear strain fields. Potential applications may also include fail-
ure analysis of highly strained fiber-elastomer composites, since
the model estimates the shear strain fields of the desired compos-
ites from which the corresponding shear energy distributions can
be obtained.

Throughout the manuscript, we use standard notation such as
AT A1 A* and tr(A). These are the transpose, the inverse, the co-
factor and the trace of a tensor A, respectively. The tensor product
of vectors is indicated by interposing the symbol ®, and the Euclid-
ian inner product of tensors A, Bis defined by A-B =tr(AB"); the
associated norm is |A| = VA A. The symbol || is also used to de-
note the usual Euclidian norm of vectors. Latin and Greek indices
take values in {1, 2} and, when repeated, are summed over their
ranges. Lastly, the notation F, stands for the tensor-valued deriva-
tives of a scalar-valued function F(A).

2. Kinematics

Our intention throughout this section is to establish the kine-
matic framework that will be used in the constitutive formulations
of hyperelastic matrix-fiber composites. We note that, in the for-
going development, unidirectional fiber-reinforced composites are
considered for the sake of simplicity. The cases of bidirectional
fibers can be readily accommodated via similar approaches, as
done in Kim and Zeidi (2018) and Steigmann and dell’Isola (2015).

Let r(s) be the parametric curve which represents the fibers’
trajectory on the deformed configuration and 7 be the unit tan-
gent in the direction of increasing s. We also assign X(S) and S as
their counter parts in the reference configuration. The orientation
of a particular fiber is then defined by

_ 4, ds _dr(s)
A=|dland At =d; A= and7=—, (1)
where
d=FD, F=A7®D, (2)

and F is the gradient of the deformation function (x(X)). Eq. (2) is
obtained by taking the derivative of r(s(S)) = x (X(S)) with respect
to arc length parameters S and s, upon making the identifications
D =dX/dS. Here, d(*)/dS and d(*)/ds refer to the arc length deriva-
tives of (*) along the fibers’ directions in the reference and de-
formed configurations, respectively. Eq. (2) can be projected using
the orthonormal bases of {E4: reference} and {e;: current} to yield

A'L'j = d,‘ = FEaDy4 for D = DpE, and d = de,', (3)

which may also be used in the later sections.
Thus, from Egs. (1)-(2), the expression for geodesic curvature of
a parametric curve (r(s)) is obtained by

gt = d(&S)) _ 9(FD) 8X
ds JX 9§
In a typical environment, most of the fibers are straight prior
to deformations. Even slightly curved fibers can be idealized as
‘fairly straight’ fibers, considering their length scales with respect
to those of the matrix materials. This indicates that the gradients
of unit tangents in the reference configuration identically vanish
(i.e. VD = 0). Accordingly, Eqs. (4) reduces to
g=VF(D®D) =G(D®D), (5)
where we adopt the convention of the second gradient of defor-
mations as
VF =G, (6)
and the compatibility condition of G is given by

GiAB = FiA,B = FiB,A = GiBA~ (7)

— V[FDID. (4)
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The forgoing developments imply that the response of fiber-
reinforced materials are governed by both the first and second gra-
dient of deformations such that

W(E.G) = W(E) + W(G), W) =1C(E)lg. (®)

where C(F) refers to the material property associated with the
bending motions of fibers, which are generally independent of the
deformation gradient (i.e. C(F) = C). Further, g is the geodesic cur-
vature of fibers which is computed via the second gradient of con-
tinuum deformation (G). Eq. (8) is consistent with the model pro-
posed by Spencer and Soldatos (2007) that, in the case of a single
family of fibers, the dependence of the strain energy on G occurs
through g; i.e.,

W(G) =W(g(G)). (9)

The invariance requirements arising in the second gradient
continuum deformation remain valid for cases of finite elastic
deformations of continuum bodies (Spencer, 1972; 1984; Rivlin,
1995) and biological membranes subjected to large deformations
(Holzapfel and Ogden, 2006), and therefore, have been adopted
in the present study without further proof. For the desired appli-
cations, we now introduce the strain energy potential, which ad-
dresses the fiber’s resistance to extension as

W(e) = %Eez, (10)
where the expression of ¢ is given by
8:%(1\2_1), (11)

and E is a modulus pertaining to the fiber’s extension. Further, in
view of Eq. ((3), A2 can be expressed in terms of the deformation
gradient tensor F and the director field of fibers D as

A2=FD-FD=FFD.D = (F'FF) . D®D. (12)

It is clear from Eqs. (11) and (12) that the fiber’s extension is F-
dependent via ¢ (i.e. ¢ = ¢(F)) and thus the strain energy function
(Eqg. (8)) can be augmented by Eq. (10) to yield

W (F, (F), g(G)) = W(F) + %Eez + %C|g(G)|2. (13)

We also note that the torsional energy of the fibers is excluded
in the present study, since the in-plane deformation (plane strain)
of the fiber composites is considered. Further, it is discussed in
Spencer and Soldatos (2007) that the indeterminacy arising in the
plane strain formulations of the second gradient of deformations
results no effects on the associated energy balance equation and is
not case specific to fiber-reinforced materials. The related deriva-
tions and discussions can be found in Toupin (1962); Mindlin and
Tiersten (1962a). In the present study, we simply adopt the re-
sults for the sake of conciseness. For uses in the derivation of Euler
equations and the associated boundary conditions, we continue by
evaluating the induced energy variation of the response function
(Eqg. (13)) with respect to F, ¢, and g as

W (F, &, 8) = We F+W 6+ W, 8. (14)

In the above, the superposed dot refers to derivatives with respect
to a parameter ¢ at the particular configuration of the composite
(i.e. € = 0) that labels a one-parameter family of deformations.

The desired expressions for the energy variation can be ob-
tained from Eqgs. (10)-(13) that

é:%(Az—ljz%(FD~FD—15=FD~FD=FD®D~F, (15)

W, = Ee, and W, =Cg. (16)

The above further leads to

W, é = Eeé =E[%{(FTF)~D®D—1}][FD®D]-1'= (17)

Weg=Cg-§=G(D D) -G(DxD)=(CgzDaD)-G. (18)

where g = G(D ® D) (see, Eq. (5)).
Finally, combining Eqs. (14)-(18), we find

W(F, e, g) = WF-F+E[%{(FTF) -D®D-1}][FD ® D]
F+(CgeoDeD)-G. (19)

or equivalently

W (F.£.8) = We,Fa + = (FcEpDcDo — 1) (FsDsDp)Fi
+CgiDADgGings, (20)

3. Equilibrium

The derivation of the Euler equation and boundary conditions
arising in second-gradient elasticity is well studied (Toupin, 1964),
(Koiter, 1964), (Mindlin and Tiersten, 1962b) and (Germain, 2015).
We reformulate the results in the present context for the sake of
completeness and, in particular, for the purpose of establishing the
connections between the applied loads and the deformations. The
weak form of the equilibrium equations is given by the virtual-
work statement

E=P, (21a)

where P is the virtual power of the applied loads, the superposed
dot refers to the variational and/or Gatedux derivative and

E= /W(F,s,g)dA (22a)
Q

is the strain energy.

In general, volumetric changes in materials’ deformations are
energetically expensive processes and thus are typically con-
strained in the constitutive modeling of engineering materials (see,
Ogden, 1984; Steigmann, 2017). To accommodate the condition
of the bulk incompressibility, the strain energy potential is aug-
mented by the weak form, p(J —1) as

U=W—p(J—1) andE:/U(F,s,g)dA, (23)
Q

where J is determinant of F and p is a constitutively indetermi-
nate scalar field. The associated variation is then obtained by

U=W—pJ, and J=JsF - F=F F. (24)

Since the conservative loads are characterized by the existence of
a potential L such that P = L, the problem of determining equilib-
rium deformations is reduced to the problem of minimizing the
potential energy, E — L. In the present case, this means

E =/U(F,s,g,p)dA. (25)
Q

Now, we substitute Eqs. (21a) and (24) into Eq. (25) and thereby
obtain

. E
E= / [WE,uia + 5 (FicFjpDcDp — 1) (FgDpDa)u; 4
Q

+C(giDaDp)u; ag — pEpuia]dA, (26)

where u; = x; is the variation of the position field. Further, apply-
ing integration by part on ((g;DaDG)u; 45 yields

C(giDaDp)u; ap = C(giDaDpu; o) g — C(giDaDp) sl 4. (27)
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Thus Egs. (26) and (27) furnish

: E

£ = [ (Wi, + 5 (FcFioDcDo — 1) (EaDaDy) ~ PF
Q

—C(giDaDp) s}u;j 4 + C(giDaDpl; 4) p]dA. (28)
The above may be further reduced to
. E
£ = [ Ws, + 5 (FcFioDcDp — 1) (FaDaDy)
Q
— PE; — C(giDaDp) plu; adA + / C(giDaDgui; o)NpdS, (29)
Elo)
where N, is the rightward unit normal to dQ2in the sense of

Green-Stokes theorem.
Consequently, we find

£ / Pyt pdA + / C(gDaDgi; 4)NgdS, (30)
Q Q2
where
E
Py =Wk, + 5 (FicFipDcDp — 1) (FgDgDs) — PF; — C(8iDaDs) 5
(31)

is the expression of the Piola type stress. Also, for initially straight
fibers (see, Eqs. (4) and (5)), the above further reduces to

E
P =W, + 5 (FicFipDcDp — 1) (FgDgDy) — pFj; — CgigDaDp.  (32)

Thus the Euler equation is obtained by
P4 =0 or Div(P) =0, (33)
which holds in €.

4. Boundary conditions

Applying integration by part on Eq. (30)(i.e. Pau;a = (Palj) 4 —
(Pa) au;) furnishes

E= [ [(Pats).a — PaaldA [ C(DADot0)NadS. (34)
We then recast Eq. (34) by using Green-Stokes theorem as
E= [ _PaNs + C(DADupINoldS — | P pudh (35)

Since the Euler equation (P4 = 0) satisfied on €, the above re-
duces to

E:/ P,-Au,»NAdS+/ C(giDaDpu; o) NpdS. (36)
0Q 0%

Now, we project Vu onto the normal and tangent directions and
obtain
Vu=Vu(T@T)+Vu(N®N) = u'gT + u,y&N, (37)

where T=X'(s) =k x N is the unit tangent to the boundary <,
and u and uy are the tangential and normal derivatives of u on

a2 (ie. u; =UjpTx. Ujn =U;jpN4). Thus, Eq. (36) can be decom-
posed into

E= / Pau;iNadS + f CgiDaDp (u;TaNg + t; yNaN5 ) dS. (38)
IQ aQ
Also, using the following identity

CgiDaDTaN3U,; = (CgiDaDpTaNpl;) — (CgiDaDsTaNg) u;, (39)
Eq. (38) becomes

E= /a Q[PiANA — (CgiDADETANp) Ju;dS

+ [ CeiDaDyu; yNaNsdS + / (CeiDADsTyNgit;) dS.  (40)
0Q 0Q
We then rewrite the above into the standard form:
E= /m[PiANA — (CgiDATyDpNp) |u;dS + /asz CgiDaNaDgNpu; ydS

= > ICgiDaTaDNpu;]|. (41)

where the double bar symbol refers to the jump across the discon-
tinuities on the boundary 92 (i.e. ||*|| = (*)T — (¥)7) and the sum
refers to the collection of all discontinuities.

It follows from (21a) that admissible powers are of the form

P= tiu;dS + / m,'ui,NdS + Zfiui. (42)
Iwe w

Hence, by comparing (41) and (42), we obtain

d
ti = PaNg — %[CgiDATADBNBL

m; = CgiDaNsDgNp,
fi = CgiDaTyDpNpuy;, (43)

which are the expressions of edge tractions, edge moments and the
corner forces, respectively.

For example, if the fiber’s directions are either normal or tan-
gential to the boundary (i.e. (D-T)(D-N) = 0), (43) furnishes

ti = PaNa,
m; = CgiDaNaDpNp,

fi=0, (44)
where

E
Py = W, + 5 (FicFjpDcDp — 1) (FgDgDa) — pEj — Cg; gDaDg,
8.8 = FcapDcDp(see, Eq. (5)). (45)

Thus, the solution of Eq. (33) can be uniquely determined by im-
posing the admissible set of boundary conditions in Eq. (43).

5. Hyperelastic matrix material - fiber composites

Based on the constitutive framework addressed in the pre-
vious sections, we develop a continuum-based prediction model
which describes the responses of hyperelastic matrix material
- fiber composites such as carbon-fiber-reinforced polymers and
elastomeric composites. For this purpose, we employ the Mooney
Rivlin strain energy potential, which is widely adopted in large de-
formation analyses (see, also, Ogden, 1984; Steigmann, 2017):

WE =L -3+ 503, (46)

where I and I, are the principal invariants of the deformation gra-
dient tensor which are given, respectively, by

I, = tr(F'F) and I, = %[(tr(FTF))Z — tr((F'F)%)]. (47)

Since (I;)g = 2F and (I)g = 2F(I;1 — FTF) (see, Steigmann, 2002),
the variational derivative of Eq. (46) can be evaluated as

Wek = 14 ()65 ()ebF = [WFF(B-BI-FRILE. (48)
Therefore, substituting Eq. (48) into Eq. (32), we obtain
P = Py(e;®E,)

— |4F MR FicFicds—FiFi) + 5 E BisFicFi)DaDsDoDo

1
_EEFI'BDADB_Cgi,BDADB — pF;3](e;QE,), (49)
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which may serve as the expression of the Piola stress for hypere-
lastic composite materials. Further, the corresponding Euler equi-
librium equation can be derived as

0 = Div(P) = P4 a€; = [tFia a+A{Fg(FicFicSps—FiaFjp) } 4

1
—Cg;i asDaDp — p aF; + EE (FigFicFic) ADADgDpDp

1
—jEFiB.ADADB]ei» (50)

which hold on €.

In the above, ; and A are the material constants of a hyperelas-
tic matrix material of Mooney Rivlin type, and E and C are, respec-
tively, the extension and bending modulus of fibers. For example, if
the hyperelastic matrix material is reinforced with a single family
of fibers (i.e. D=E;, D; =1, D, =0) with the modulus of E and
C, Eq. (50) furnishes
0= [MXi,AA — D.agijea X i+ A (XiaaXjcXjc + XiaXjcaXjc

+ XiaXjcXjcA—XiBAXjAXjB — XiBXjAAXjB — XiBXjAXjBA)
1
+ EE(XLH XiaXia1 + Xia Xin X1+ Xi1 XjiXj)

1
- EEELl - CXi,]lu]eh (51)

where Fy = ;4 = g—))a, F} = €ijeapFip, and g is the 2-D permuta-
tion; €15 = —&31 =1, €11 = —&35 = 0. Performing Einstein summa-
tion and with some effort, we arrive at
0=pwn(in+ x122) —Paxz2+ P2x21+A(X1,11X2.2X2,2

+ X122 X210 X210 + 2X1,1 X221 X2.2 + 2 X1,2X2,12 X2.1

= X1,21X21X2,2 — X1,12X2,2X2,1 — X1,2X2,11 X2,2

— X11X2,22X21 — X12X2,1X2.21 — X1,1X2.2X2,12)

1
+§E(3X1,11X1‘1X1,1 + X111 X2.1X21
+2x21 X1.1X2.1) — Cx1.11m1, (52)

0= pu(x2n + X222) — P2X1.1 + Paxi2+A (X211 X1.2X1.2
+ X2.22X1.1X1.1 +2X21 X121 X1.2 + 2 X2.2 X1.12X1.1
— X221 X11X1.2 — X2,12X1,2X1,1 — X2,2X1,11 X1,2
— X2,1X1.22X1,1 — X22X1,1X1.21 — X2.1X1,2X1,12)

1
+§E(3X2,11X2,1X2,1 + X2 X1.1X11

+2x1nx2.1X1.1) — Cxz.m. (53)
which together with the constraint of the bulk incompressibility,
detF = x11x22— X12X21 =1, (54)

solves the unknown potentials of x 1, x» and p. The solution of the
above PDE can be uniquely determined by imposing the admis-
sible boundary conditions in Eq. (44). For the rectangular shaped
samples where D-T =0 and D-N = 1, Eq. (44) takes the following
form

ty =Py, =0,
my = Cgy, my =0,
fi=fH=0 (55)

In addition, from Egs. (5) and (49), the expressions of P;; and
g, can be obtained, respectively, as

Py = px1a+A((11X2.2X22— X1.2X2.1 X2.2)
1
+ EEX1,1(X1,1X1‘1 + X2.1X21 + X12X1.2 +2.1 X2.22.1X2,2)

1
_EEXLl —Cx1,1m — pXx2.2

g1 = GmDiDy = x1.11. (56)

The numerical solution of the obtained PDE system (Eqs. (42)-(44))
can be accommodated via commercial packages (e.g. Matlab, COM-
SOL etc...). The details of numerical procedures are reserved in the
“ Appendix” for the sake of coherence.

5.1. Consideration of linear theory

Although the proposed model is intended for large deformation
analyses, the development of the compatible linear model may be
of practical interest especially when the induced deformations are
determined to be ‘small . In such cases, the linear theory may sup-
ply reasonable alternatives with reduced computational resources.
Our intention here is to investigate the possibility of a compatible
linear model for the materials of the Mooney Rivlin type within
the description of superposed incremental deformations.

We consider superposed ‘small’ deformations defined by

X=Xo+ex el «1, (57)

where (%) =0d(x)/de, x =u and (*), denote configuration of *,
evaluated at € =0, (%) = d(x)/d¢e. Here caution needs to be taken
that the present notation is not confused with the one used for
the variational computation. Accordingly, the deformation gradient
tensor can be approximated as

F=F, +¢€Vu, where F=Vu. (58)

In a typical environment, the body is initially undeformed and
stress free (i.e. at € =0, Fo =1 and P, = 0). To accommodate the
initial conditions, we require

Fo=Iland P, =0, at £ =0, (59)
from which Eq. (58) reduces to
F=1+¢Vu, (60)

and successively yields

F ! =1—-eVu+o(¢) and ] = detF =1 + edivu+o(¢). (61a)
Also, in view of Eq. (57), we approximate Eq. (33) as

Div(P) = Div(P,) + €Div(P) + o(€) = 0. (62)

Dividing the above by € and letting ¢ — 0, we find the follow-
ing linearized Euler equation

Div(P) =0 or P44 =0, (63)
where the expression of P4 can be obtained from Eq. (45) that
Ps = (Wr,) + E[Fic (Fip)oDcDp][ (Fi)oDpDa) ]

42 [(F)o(Fp)oDeDp — 11(EsDsDy) — B(F3)o

~ P — &5DaDg. (64)
Since (Fjp)o = djp and (Fj)o = dj4 at € =0, Eq. (64) further reduces
to
Py = (Wi,) + Eu;gDaDgDiD; — pSia — PEj; — U; sepDcDpDaDs,

(65)

where ajCSjDDCDD = DCDC =1 and gi_B = FiC,BDDCDD' We note that,
in the above equation, the initial director field D is represented by
the current basis (i.e. D;e;) not by the reference frame (i.e. D4E,).
This is due to the collapse of two different bases arising in linear
elasticity theory (i.e. e; = E4; see, also, Ogden, 1984; Steigmann,
2017). Hence, the associated tensor operations are possible without
conflicting the bases.
Now we find from Eqs. (48) and (49) that

(Wr,) = iFa + AFig(8c8ic8ap — 8;ads)
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Fig. 1. Experimental set up: Elastomeric composite sample (50mm x 25mm) under uniaxial tension test.

T T T

——— Ecoflex-0050 (Experiment)
Mooney-Rivlin Model (Error=2.3%)
(1 =0.1013 MPa, A =-0.14 MPa)

Strain (A-1)

Fig. 2. Stress-strain curves: Ecoflex-0050 and the Mooney Rivlin curve fitting.

+A8i5(2F;c8ic8a — Fiadjp — 8jaFjp)
= MFIA =+ ZA«F.BBSI'A — )\FAia (66)

Stress (P(Mpa))
n
[4,]
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0 |
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<+ —>
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Fig. 4. Schematic of the problem: 2a = 50 mm and 2b = 25 mm.

which may serve as the linearized variational form of the Mooney
Rivlin strain energy potential. The substitution of Eq. (66) into Eq.
(64) then furnishes

Pa = [AUia — Mg+ EujgDaDpDiD;j — Pdia — poFj;

— Ui pcpDcDpD4 D, (67)

where p, = to recover the initial stress free state at € =0 (i.e.
(Pa)e—o = 0), and Fgp = ug g vanishes from the linearized condition
of bulk incompressibility; i.e.,
(J—1) = (Fo Fia = Sialtin = upa = 0. (68)
In addition, using the identities of F,.jg, 4 =0 (Piola’s identity) and
(PSia).a = P adia = D, the expression of P,AYA can be formulated
as

Paa = HUjas — Mg ja + EujapDaDgDiD; — P ;

10 T

NSP-8515
9r NSP-8202 7
8l il
7k il

Stress (P(MPa))

0 n I I I I
0 0.5 1 1.5 2 25 3

Strain (A-1)

Fig. 3. (a) Stress-strain: PES-2 and PES-3 fibers. (b) Stress-strain: NSP-8515 and NSP-8020 fibers.
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3 T
— — — PES-2 (Experiment)
—6— PES-2 (Proposed Model)
o5 e PES-2 (Holzapfel Model i

with K1:38.5 and K2=-0.025 )
PES-3 (Experiment)

—&— PES-3 (Proposed Model)

2r PES-3 (Holzapf el Model 1
with K1:9.75 and K220.012 )

—e—-

Stress (P(MPa))

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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Fig. 5. Stress-strain curves from different prediction models: PES-2 & PES-3.

— U; ascpDcDpDaDp = 0. (69)

But, from the compatibility condition of u,;y, together with
Eq. (68), it is not difficult to show

Upia = Upai = (Upa)i = 0. (70)
Consequently, Eq. (69) becomes
Paa = ptljas + Euj spDaDEDiD;j — P i — U apcpDcDpDaDp = 0, (71)

which can serve as the compatible linear Euler equation for the
materials of Mooney Rivlin type.

We remark that the linearized equations derived from the pro-
posed model (Eq. (71)) are the same as those obtained from the
setting of the Neo Hookean based model (see, Eq. (56) in Zeidi and
Kim, 2017b or Eq. (77) in Kim and Zeidi, 2018). This is mainly due
to the fact that the influence of the higher-order invariant term,
I, in the Mooney Rivlin energy potential is gradually diminished
as it enters into the small deformation regime. Since the existence
of the high-order invariant term I, is the primary distinction be-
tween the Mooney Rivlin and Neo Hookean models, the above re-
sult would mean that the two models become essentially identical
within the prescription of superposed incremental deformations.
Therefore, the linear consideration of the Mooney Rivlin potential

4.5 T T T
————- NSP-8020 (Experiment)
4 + |—»%— NSP-8020 (Proposed Model) 8
NSP-8020 (Holzapfel Model
35 with K;=1.25 and K,=0.0015) 4
3h 4
g
sS25 b
c
2 2f 1
e
77
15 b
1 4
05 o 4
0 i I I I I I
0 0.5 1 1.5 2 25 3 3.5

Strain (A-1)

may not be necessary in the present case. The corresponding solu-
tions of Egs. (68) and (71) and the necessary boundary conditions
can be found in Zeidi and Kim (2017b) and Kim and Zeidi (2018).

6. Model implementation and discussions

A comparison with experimental results is presented in this
section to demonstrate the performance and utility of the pro-
posed model. We designed the uniaxial tension test of four dif-
ferent types of elastomeric composites that are reinforced, re-
spectively, by polyester/spandex fibers (PES-2, PES-3) and ny-
lon/spandex fibers (NSP-8515, NSP-8020). Ecoflex 0050 (Smooth-on
Inc., USA) is used for the matrix materials for all the fiber samples,
which is known to be one of the promising materials in biome-
chanical applications for its high tear resistance and large exten-
sibility. The reinforced elastomeric composites were fabricated in
a three-layer configuration using the layer by layer method. First,
Ecoflex 0050 elastomer was prepared by mixing two components (a
base and curing agent) in 1: 1 ratio and subsequently degassed in
a vacuum chamber to remove entrapped bubbles. The second layer
of long fibers was then placed flat on the elastomer and allowed
to wet at the interface. A small amount of elastomer was poured
and rolled over the fibers to wet it again and to fill the gaps be-
tween pores and level the second layer. Lastly, a sufficient amount
of elastomer was poured over the second layer and placed into the
film applicator rod to yield uniform film. The dimensions of the
fabricated elastomeric composites were measured using a caliper
and an aspect ratio of length-to-width of 2: 1 was maintained
for all samples. Instron 5943 (lllinois Tool Works Inc., USA) was
used to measure stress-strain responses of the prepared compos-
ites (See Fig. 1). The extension rate was set to be 10mm per minute
to avoid/minimize viscous responses. The stress-strain curves and
the deformations of material points on the samples were simulta-
neously recorded for the purpose of comparisons with the theoret-
ical predictions obtained from the proposed model.

The material parameters of the matrix material (i.e. A and )
are determined from the stress-strain curve of Ecoflex-0050 (see,
Fig. 2) using the Mooney-Rivlin model. The elastic modulus of
fibers (i.e. E and C) are obtained from the stress-strain curves of
the four different fibers (Fig. 3(a) and (b)) in which we used the
formula (Mihai and Goriely, 2017)

E— P
a—A(a)

Here, P and a are the stress and extension ratio of fibers, respec-

tively, while A(a) is the stretch ratio in the orthogonal direction

(1-X(a) (72)

———-—- NSP-8515 (Experiment)

—©6—NSP-8515 (Proposed Model)
25 NSP-8515 (Holzapfel Model @
with K, =2 and K,=0.0015) /

Stress (P(MPa))
&

0.5

0 0.5 1 1.5 2 2.5
Strain (A-1)

Fig. 6. Stress-strain curves from different prediction models: PES-2 & PES-3: NSP8020-2 & NSP8515.
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Fig. 7. Deformation profiles: (a) x1 (PES-2); (b) x (PES-2); (c) x1 (PES-3); (d) x2(PES-3).

from the stress-strain data of fibers (Fig. 3(a) and (b)). The ob-
tained material properties are then used as the input parameters
of the PDEs in Eqs. (64) and (65), which are numerically solved via
the custom-built algorithm (see, Appendix). In the assimilations,
the applied load Py; is computed from Eq. (49) such that

Py = px1a+A((11X22X2.2— X1.2X2.1 X2.2)
1
+ §EX1.1(X1.1X1,1 + X2.1X21 + X12X1.2 +2.1 X2.22,1X2.2)

1
—EEXLl—CXLm —DPX22- (73)

The associated boundary conditions are prescribed as follows (see,
Fig. 4.):

ti1 =Py, t =P =0, at X; =a,—a and

t1=Pn =0, tp=P»p=0, at X; =b, -b. (74)

In addition, the following Holzapfel model (Holzapfel et al.,
2000) is used in the estimation of the experimental results:

W= S0 -3)+ 5 3 lexplio (- 171 - 1),

i=4,6

(75)

where ¢ is the property of matrix and k; and k, are empirical
fitting parameters pertaining to the composites. The obtained re-
sults are then compared with the predictions made by the pro-

posed model. The Holzapfel model is widely adopted in bioma-
terials applications such as mimicking natural aorta, vein, carti-
lage and aortic valve where the J-shaped stress-strain responses
(see, Fung, 1984; Vatankhah-Varnosfaderani et al., 2017; Yan et al.,
2017 and Zhalmuratova et al.) and significant anisotropy (Fung,
1993; Abe and Hayashi, 1996) are the primary design consider-
ations. Our intention for the model comparison is to investigate
the potential applications of the proposed model in the design and
analysis of biomimetic materials that can be implanted to replace
or repair damaged/missing tissue.

A comparison among the stress-strain curves obtained from the
experimental data, the proposed model and the Holzapfel model
are presented in Figs. 5 and 6. It is shown in Figs. 5 and 6 that the
proposed model successfully predict the J-shaped stress-strain re-
sponses of the composites regardless of the different strain- stiff-
ening rates. The Holzapfel model also produces reasonably accu-
rate estimations of the stress-strain curves of the tested samples
except the slight deviations in the transition (i.e. strain-stiffening)
regimes of PES-3 and NSP-8515 composites where rapid strain-
stiffening responses are observed at a low strain level. In other
words, the Holzapfel model is less sensitive to the steep variations
of the stress-strain curve than the proposed model. Such limited
sensitivity may not compromise the overall prediction accuracy of
the model. However, it may be potential disadvantage, especially
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Fig. 8. Deformation profiles: (a) x; (NSP-8020); (b) x2 (NSP-8020); (c) x1(NSP-8515); (d) x2 (NSP-8515).

when mimicking biological tissues, considering the fact that one
of the primary requirements of the theoretical model is the ability
to predict rapid strain-stiffening behaviors at a low level of strain,
which is also known to be a characteristic of most biological tis-
sues (Fung, 1984; Vatankhah-Varnosfaderani et al., 2017).

More importantly, unlike the Holzapfel model in which the em-
pirical constants k; and k, are obtained from the fabricated com-
posites, the proposed model predicts the resultant properties of
desired composites prior to the composition as long as the mate-
rial parameters of matrix materials and fibers are provided (i.e. no
empirical curve fitting of the composite is necessary). This may be
of more practical interest, especially in the design stage of compos-
ites. Since the responses of the intended composites can be prede-
termined using the proposed model, through which the required
resources in the sample productions may be minimized.

In addition to the abovementioned technical merits, the pro-
posed model provides the quantitative predictions of other key
design considerations such as deformation profiles and contours,
and shear strain distributions. Fig. 7(a)-(d) illustrate the x; and
X » deformation profiles of the polyester/spandex fiber-composites
(PES-2, PES-3) at different strain levels. Despite the inevitable un-
certainties (e.g. image processing and curve fitting), the deforma-

tion profiles from the experiment and the theoretical predictions
demonstrate close agreement throughout the entire domain of in-
terest. In the case of the nylon/spandex fiber-composites (NSP-
8515, NSP-8020), the proposed model accurately predicts the x1
deformations (axial elongation) of both samples (see, Fig. 8(a)-(c)),
yet has limitations in the prediction of x, deformations, especially
those in the NSP-8515 composites at lower strain levels (Fig. 8(d)).
This may be due to the NSP-8515 fibers’ resistance along the x, di-
rection within the composites, which hinders the x, deformation.
We speculate that the bidirectional fiber model may be suitable for
the deformation analysis of NSP-8515 fiber-composites. Further re-
search on these cases is, however, beyond the scope of the present
study, yet is certainly of practical interest. The graphical compar-
isons between the theoretical prediction and experimental result
for the cases of the PES-3 sample at 50% and 100% elongations, and
the NSP-8020 sample at 167% and 235% elongations are presented
in Figs. 9-10 for the purpose of cross-examination with the de-
formation data obtained in Figs. 7 and 8. The plotted deformation
contours are the norms of displacement fields (i.e.,/x? + x3) and
demonstrate reasonably close agreement with the deformed con-
figurations of both composite samples. The same comparisons are
made for the PES-2 and NSP-8515 cases, which again indicate close
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PES-3 at 50% (top) and 100% (bottom) elongation.

Fig. 12. Shear angle distributions: NSP8020 at 167% (top) and 235% (bottom) elon-
gation.

correspondence with experiments except NSP-8515 at 50% elonga-
tion (see, also, Fig. 8(d)). However, these have been intentionally
omitted for the sake of conciseness.

Lastly, the shear angle distributions from both the experiments
and theoretical predictions are presented through Figs. 10 and 11.
The corresponding shear angle configurations are mapped using a
fine mesh grid of 1.78mm x 1.78mm printed on the surfaces of the
PES-3 and NSP-8020 composite samples. The deformed material
points are measured from the intersections of printed mesh grids
and subsequently processed via the Matlab image processing tool
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in order to compute the shear strain relation of yxy = o + 8, where
tan(a) = x2.1/(1+ x1.1) and tan(B) = x1.2/ (1+ x2.2)- The pre-
diction results in Figs. 10 and 11 clearly indicate that the obtained
model successfully estimates the shear strain distributions of the
PES-3 composite at 50% and 100%, and the NSP-8020 composite
at 167% and 235% strain levels. In particular, the shear strain dis-
tributions predicted by the proposed model are smooth and con-
tinuous over the entire domain of interest unlike those depicted
by the classical (first-order) continuum theory where significant
discontinuities are present (see, also, Dell'lsola et al., 2017 and
Dell'lsola et al., 2016a). Further, the corresponding stress fields be-
come “Piola type double stress” (see, for example, Javili et al., 2013;
dell'lsola et al., 2012; dell'lsola et al., 2016) due to the introduction
of bending stiffness of fibers into the model of continuum defor-
mation (second-gradient continuum). In other words, the resulting
stress fields now depend both on the axial stiffness (E) and bend-
ing stiffness (C) of fibers (see, Eq. 73). More detailed discussions
regarding the qualitive sensitivity of the deformation, stress and
strain fields with respect to the material parameters of fibers can
be found in Zeidi and Kim (2018, 2017b) and Kim and Zeidi (2018).
In the present case, the J-shaped stress-strain response of a certain
composite tends to be stiffer with increasing bending modulus of
fibers. The result may be further extended to the failure analysis
of highly strained fiber-elastomer composites by providing quanti-
tative measurements of the shear strain energy distributions of the
desired composites.

Overall, the proposed model successfully predicts the various
important mechanical responses of the tested elastomeric compos-
ites and therefore may also serve as an alternative of the Holzapfel
model in the design and analysis of biomimetic composites, es-
pecially those exhibiting significant strain-stiffening responses at
a low level of strain.

7. Conclusion

In this study, we present a continuum model for the mechan-
ics of a hyperelastic polymer material reinforced with polyester
fibers in finite plane elastostatics. The reinforcing long fibers are
idealized as continuously distributed spatial rods of the Kirchhoff
type, where the elastic resistant of fibers against stretch and flex-
ure are integrated into the models of the continuum deformation
via the first and second gradient of deformations, respectively. We
place an emphasis on the assimilation of J-shaped stress-strain be-

haviors of the elastomeric composites while maintaining the rigor
and sufficient generality in the derivation of the associated con-
stitutive formulation. To accommodate the hyperelastic responses
of the matrix material (Ecoflex 0050), the strain energy function of
the composite is refined by the Mooney Rivlin model. Within the
framework of the second gradient theory, the Euler equation and
necessary boundary conditions are also derived using the varia-
tional principles and the virtual work statement. These, in turn,
furnishes a highly nonlinear PDE from which a set of numerical
solutions describing the hyperelastic responses of the composites
are obtained via the custom-built numerical procedures.

More importantly, we demonstrated that the presented model
successfully predicts rapid strain-stiffening behavior of the Ecoflex
00500-fiber composite at low strain level. Further, the deformation
profiles and shear angle distributions of the composites are com-
puted which demonstrate good agreement with the in-house ex-
periment and the existing results in literature. In particular, the ob-
tained model directly predicts the resultant stress-strain responses
of the composite via the integration of the known modulus of ma-
trix materials and fibers. This may facilitate the design and anal-
ysis of a certain composite, since the model provides the instant
estimations of the mechanical responses of composite prior to the
fabrication. Potential applications may also include the failure anal-
ysis of highly strained elastomeric composites by estimating the
shear strain fields from the obtained deformation map through
which the corresponding shear energy distributions can be ob-
tained. Lastly, we mention that the proposed model may serve as
an alternative of the Holzapfel model in the estimations of rapid
stress-strain responses of hyperelastic composite materials.
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Appendix A. Finite element analysis of the 4th order coupled PDE

The systems of PDEs in Eqs. (52)-(54) are 4th order differential equations with coupled non-linear terms. The case of such less regular
PDEs deserve delicate mathematical treatment and is of particular practical interest. Hence, it is not trivial to demonstrate the associated
numerical analysis procedures.

For preprocessing, Eqs. (52)-(54) may be recast as

0 = u(Q+ x1.22) —AX22 +Bx21 — CQu+A(QFF + X122DD + 2Cx2 21 F + 2E %2 12D — Xx1,21DF — X1,12FD
—ERF —Cx2.22D —ED)221 = CFx2.12) — %EQ + %E(3QX1.1X1,1 +Qx2.1X2.1 + 2RX1.1X2.1)

0= u(XR+ x222) = Bx1.1 +Ax12 — CR 11 +A(REE + X222CC + 2D X1 ;E + 2F X1, 12C — X2.21CE — X2,12EC
—FQE — Dx1.22C = FCx121 — DEX1.12) — %ER + %E(3RX2,1X2,1 +RX1aX11+2Qx2.1X1.1)

0=0Q-x1m,

0=R-X211.

0=C-Jx11.

0=D-x21.

0=E- X1

0=F—x22,

0=A-u@Q+ x122) —CQu,

0=B-uR+ x2.22) —CRn, (76)

where Q = x1.11. R=x2.11. C=x1.1. D= x2.1.E = X1.2. F = x2.2. Thus, the order of differential equations is reduced from the three cou-
pled equations of 4th order to ten coupled equations of 2nd order. In particular, the non-linear terms in the above equations (e.g. Ax 2.2,
By etc..) can be systematically treated via the following Picard iterative procedure:

_Ainitialxé'né’tial + Binitialxé‘ni'tial = —Ag X202 + BOX201
initial ., initial initial ., initial 0 0
A Xiz2' " =B = Aoxia — Boxias (77)

where the estimated values of A and B continue to be updated based on their previous estimations (e.g. A; and B; are refreshed by their
previous pair of A, and B,) as iteration progresses as well as for other non-linear terms.
Further, we find the weight forms of Eq. (76) as

0= fW1 (u(Q+ x1.22) —Aox22 +Box21 — CQ11+A(QRF + x1,.22D0D0 + 2Co x2,21F
Q

+2Eg x2,12D0 — X1,21D0F0 — X1,12F0Do — EoRFy — Co X2,22D0 — EoDg X2,21
1 1
—Gobox2.12) — jEW1Q + EEW1 (3QC% + QD3 + 2RCoDy) )dS2

0= fwz (R + x2,22) — Boxi,1 +Aox1,2 — CR 11+A(REoEp + x2,22C0Co + 2Do x1.21Eo
Q

+2F x1,12C0 — x2,21C0E0 — X2,12E0Co — FoQEo — Do x1,22C0 — FoCo 1,21
1 1
—DoEox1.12) — jEWZR + §WZE(3RD3 + RC2 +2QDy(p))dR2

0= /Ws(Q— X1.11)d<2,
Q

0= /W4(R— X211)dL2,
Q

0= [ws(C-xide
Q

0= fw6<D oS,
Q

0= /W7(E — X1.2)d<2,
Q

0= / ws (F — x22)d2,
Q

0= /WQ(AO — Q4 x122) — CQ)AL,
Q
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0= [ WioBo ~ (R -+ o) ~ CRi (78)
Q

Hence, applying integration by part and Green-stokes theorem, (e.g . i [ge W1 X1,22dR2 = —it [ ge W12 X1,2dR2 + 1 [ 30 Wy x1,2NdI") the
final weak forms of Eq. (78) can be obtained as follows

0= /(W1MQ — UWq2X1,2 — WiAgX2,2 + WiBox2,1 + Cwq 1Q14+AwW1QFRFy — Awy 3 X1,2D0Dg
Q

—22w11Cox2,2F0 — 2Aw1 2Eg X2,1Do + AWy 1 x1,2D0Fy + Awq 2 x1,1FDo — Aw EgRFy

1
+Awq 2Co x2,2D0 + AWy 1EoDo x2,2 + Awq 2CoFo x2,1 + EEW1Q

1
+2EW1(3QCE + QD3 + 2RCD0))d2 + / jewy x1 oNdT" — /CW1Q1Nd1"
ar

ar
+/)\W1X1.2D0D0Ndr‘+2/)\,W1C0X2,2F0Ndr+2/)\,W1E0X2_1D0Ndr
ar ar ar
—/)\W1X1_2DOFONdr —/)\.W1C0X2.2D0Ndr —V/A,W1E0D0X2y2NdF
or or ar

—/)xW]CoF()XzJNdF —/)\,W1X1,1F0D0Ndr
or ar

0= /(WZMR — W22 X2,2 — W2Bo 1,1 + WaAo X1,2 + CW2 1R 1+AW,REQEg — AWz 3 X2, 2C0Co
Q

—2Aw; 1Dg x12E0 — 2AwW; 2Fy x1,1Co + AWy 1 X2 2CoEo + AW, 2 X2 1EoCo — AW, RQEy

1
+AwW;2D0 x1,2C0 + AWo 1FoCo x1.2 + AWz 2DoEg x1.1 — EEW2R

+%W2E(3RD% +RC§ +2QDg(y))dS2 +/MW2X22NdF - /CWzR]Ndr
ar ar
+/)LW2X2_2CQC0N(1F+2'/)LW2D0X],2E0N(1F+2'/)\,W2F0C0X]V]Ndr
ar ar ar
7‘/)\.W2X2,2C0E0Ndr 7/)\.W2F0C0X],2Ndr 7/‘)\.W2X2']E0C0Ndr
ar ar ar
7/)\.W2D0X1y2CgNdF 7/)\.W2D050X14]Ndr
ar ar
0= /(W3Q+W3,1X1,1)d9—/W3X1‘1Ndr‘
Q ar
0= /(W4R+W4,1X2,1)d9—/W4,1X2,1Ndr
Q ar’
0= [ (wsC—ws11)d2
Q
0= /(WBD_WGXZ,l)dQv
Q
0= /(W7E — W7 X1.2)d2,
Q
0= /(WSF — Wg x2.2)d<2,
Q
0= /(WQA — UWoQ + UWo 2 X1.2 + CWg 1Q 1)dS2 —fMW9X1,2NdF - fCW9Q1NdF
Q ar ar

0= /(WwB — UW1oR + uwig 2 X2.2 + Cwig 1R 1)dS2 — f UW1g X2 2NdT" — /CWwRJNdF, (79)
Q ar T

where 2, 0" and N are, respectively the domain of interest, the associated boundary, and the rightward unit normal to the boundary
dI' in the sense of the Green-stoke’s theorem. The unknowns, x1, x2,Q,R, C D, E, F,A and B can be written in the form of Lagrangian
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polynomial such that

n=4

() =) [(0);¥;(x.y)]. (80)
j=1

Thus, the test function w is found to be

n=4
w=>) w¥(xy): i=1.234 and j=1,2,3.4, (81)

i=1

where w; is weight of the test function and W;(x, y) are the shape functions; ¥; = ("’2)2@’1), W, = "(V:Z”, V=% and W, = yoj—’zz) By
means of Eq. (80), Eq. ((79) may be recast in terms of Lagrangian polynomial as

0= Z{/O‘\pi.l\yj,ZDOFO + AW W 1FoDg — Wi, Wi — AW 5 W;,D0Do)d 2} x4 + Z{[(‘I’i‘l’j,130
Qe Qe

—\Ij,‘\pj.zAg — 2)\.\111'.1 \I"j,ZCOFO — 2)\.\111‘.2\1—’}'11EoD0 + )\.\I/,',z lI»]_,',zc()D() —+ )\\IJ,'.I\I/J'JE()DO —+ )\.‘-I/,‘,z ‘I-’j,1C0F0)dQ}X2j

1 3 1
+Z{f(ﬂ\l’i\yj +C\pi,1\yj.l+)h\yi\ijOF0 + EE\I‘i‘le + EE\I’I'\IJ]'C% + EE\I’I\I’]D%)dQ}QJ
QL’

+Z{/(—)\\I/,‘\IJJE()FO +E\IJ;\I»’J'C0D0)C{Q}R]' +/(/,L\IJ,X12)NdF — /(C\D,Ql)NdF + /()\\IJ;)(],zDoDo)NdF
Qe ar ar ar

+ / (20U Coxa2Fo)NAT + 2 / (AW;EoDo 2.1 )NAT" — / (AW; x1.2DoFy)NdT" — / (AW,Cox2.2D0)NdT
ar ar aor aor

- [ G-WEDox22INAT ~ [ GWCof o INGT ~ [ (3 Wixs.1FoDo)NAT
ar ar ar
0= Z{/(_qjiq/j,]BO + \pi\pj,ZAO — 2)\.\111“] “Ijj,ZDOEO — 2)\,\11,‘42Wj_]FgCO)»\IJu\I/]‘]DoCO + )\\I’“ \I»’j,zF()Co
Qe

+AW; oW 1DoEg)d2} x4 + Z{f(*ﬂ‘l’i,z‘l’j,z — AW oW 5CGCo + AW, 1 Wi 5CoEg + AW, W 1 EoCo)d2} X2
QE

1
+ Z{/(—)\\I’i\ijoEo + E\piq/jCODo)dQ}Qj + Z{/(M\I/,\IJ] + C\IJH\I’]‘,]-F)\.\IJ,“PJ‘E()EO + EE“IJi\IIj
Qe Qe

3 1
ar ar or
12 / (AWDo 1 2E0)NAT" +2 / (AWFCox1.1)NT — / (AW, x2,2CoEo)NAT" — / (AW, 2,1 ECo)NAT
or ar ar or
- / (MWDo x1.2Co)NdT — / (AW,DoEo 1 1)NAT — / (AWFCox1.2)NAT
ar ar ar
0= Yt [ (wiwde)es + YU [ wiaWind@a; - [ (Wi Ndr,
Qe Qe

are

0= Y1 [ (WdR;+ 3 [ Wi ;00— [ (Wixa NI
Qe Qe are
0= YU [ (wwpdeic - YU [ (wwind2in,
Qe Qe
0= 3t wwaeip; - S [ (Wi dc
Qe Qe
0= YU [ (wwdeE; - S [ (a2,
QE QE
0= YU [ (wwdeFy - S [ (w2)a@) 0,
Qe Qe

0= YU [ (W)deA; + 3 (- + O )00, + S0 [ (%2020
Qe Qe Qe
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Table 1
Maximum numerical errors with respect to
the number of iterations.

Number of iterations Maximum error

1 1.2e-01
5 6.4e — 02
10 3.4e-03
15 1.4e — 04
20 4.1e—-05

- / (Wi x1.2)NdT / (CWQ)NdT
are or

0= YU [ (W)d)B; + S [ (- + O Wy )RR, + Y[ (uWi2¥,0)d%) x4
Qe Qe Qe

- [ w¥peoNdr - [ @R N (82)
are ar
Now, for the local stiffness matrices and forcing vectors for each elements, we find

Ki Ky Ko Ky xi F!
K Ky Ko Ky xi E
11 11 11 11 3 | g ’ (83)
Ky Ky Ky Ky Xi 8
Kill Klg K‘g Iq‘ll Local X14 Local F41 Local
where
(K] = /()»‘-I’i,ﬂl’j,zDoFo + AW W1 FoDo — uWiWjn — AW V5D Do )d <2, (84)
Q
and
{F;l} = ./,bLW,'XLszF —/CWinNdF+/)\W,'X1_2D0D0Ndr+2/)\,W1C0X2,2F0Ndr
ar ar ar ar
+2/}»W1‘E0X2,1D0N(1F —/)\Wi)(l,zDoFoNdF —/)xW,‘Con_zDoNdr
ar ar ar
—/‘)\.WifoDo)(z.szF —'/)»Wl‘COFo)(ZJNdF —/)uW,‘)ﬁJFoDoNdF. (85)
ar ar ar

Thus, the unknowns (i.e. x1, x2,Q,R, C D, E, F,A and B) can be expressed as
Q= {xi}n. Ri={06tn. Si={Q})n etc.., (86)

and so on for the rest of the unknowns.
Consequently, we obtain the following systems of equations (in the Global form) for each individual elements as

R T S O O O N R R
[K21 ] [KZZ] [K23] [1{24] [KZS] [KZG] [K27] [KZS] [KZQ] [K210] ill — {F]} -
[K31 ] [K32] [K33] [1{34] [K35] [K36] [K37] [KBS] [K39] [K310] Q? {FZ}
[K41] [K42] [ K43] [ K44] [ 1(45] [ 1(46] [ 1(47] [ K48] [ 1(49] [ 1(410] R, {B}
[KSI ] [K52] [K53] [1{54] [KSS] [KSG] [1(57] [KSS] [KSQ] [KSIO] Al . }?‘;% -
[K61] [KGZ] [K63] [K64] [KGS] [KGG] [K67] [KSS] [KGQ] [K610] B; - {FG} : ( )
K" K? O [k2] 0 [k%] [k] [k®] [k7]  [k®] [k®] [k7°] || G Eﬁ
[K81 ] [KSZ] [K83] [1(84] [KSS] [KSG] [1(87] [KSS] [KSQ] [K810] Iz; {Fi}
K] [K9] [ I(93] [ 1(94] [ Kss] [ K%] [ K97] [ 1(98] [ K99] [ K910] Fl | {Fio} |
_[K101] [K102] [K103] [K104] [KIOS] [1(106] [1(107] [1{108] [1(109] [KIOIO]_ Lt
In the simulation, we set the following convergence criteria:
|Ans1 —An| = €1 <&, |Bny1 —Ba| =€, < &€ and ¢ = maximum error = 1074, (88)

which demonstrates fast convergence within 20 iterations (see, Table. 1).
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